Atomic data and models: a primer for high resolution X-ray spectroscopy

> Jelle Kaastra SRON & Leiden University

Why care about atomic data?

We see them, and: there is information in these lines!

Preference for black box?Input \rightarrow BLACK BOX \rightarrow Output

You can use models (APEC, SPEX, Chianti, XSTAR,) as black boxes It gives you a temperature, an abundance But what does it mean? How accurate is it? Why do I see residuals? Help!

What can you learn from a spectrum?

- 1. (Electron) temperature (from continuum or lines present)
- 2. Ion temperature (from line broadening)
- 3. Turbulence (from line broadening)
- 4. Velocity fields (from Doppler shifts)
- 5. Electron density (from line ratios)
- 6. Emission measure $n^2 V$ (from flux)
- 7. Abundances (from relative line intensities)
- 8. Age of the plasma (for transient plasmas)
- 9. Ionisation process (photons, electrons)
- 10. Nonthermal electrons
- 11. Dust
- 12. Sometimes: magnetic fields
- 13. Etc.

Steps in understanding a thermal spectrum and how to calculate a model for it

- 1. Basic physical properties:
 - temperature, density, composition, size, shape, influx,
- 2. Determine ionization balance: how many ions of each species
 - depends on physical conditions
- 3. Calculate emitted spectrum
- 4. Calculate absorption by the source: can all radiation escape?

Types of plasma

- Type determined by role of collisions of ions with:
 - Electrons (always there)
 - Photons (relevant for several interesting sources)
 - Protons (usually small corrections)
 - Other ions / atoms (Charge exchange)
- Sometimes solve balance heating ← → cooling
- Sometimes consider transient plasmas

Ionisation balance

Plasma type	Ionisation Balances recombination	Heating balances cooling	Time dependent (no balance)	Optical depth
CIE (Collisional Ionisation Equilibrium)	\checkmark	×	×	τ=0
PIE (Photo Ionisation Equilibrium)	\checkmark	\checkmark	×	<i>τ</i> >1
NEI (Non-Equilibrium Ionisation)	✓ With source term	×	\checkmark	τ=0
Transient PIE	✓ With source term	?	\checkmark	<i>τ</i> >1

Emission components:

not everything is Bremsstrahlung!

(and not everything is Fe-K....)

- Continuum
 - Bremsstrahlung

from all ions, not only hydrogen

- Radiative Recombination
 Continuum (RRC)
 narrow, line-like for PIE plasmas
- Two Photon emission
- Lines
 - Can dominate the flux at lower temperatures

Absorption components

- Continuum "edges"
 - Easy to find with low-resolution instruments
 - Broad-band
- Absorption lines
 - Much more sensitive to detect low columns of plasma
 - Needs high-resolution
- EXAFS (Extended X-ray Absorption Fine Structure)
 - Tracer for solid state structure (dust)
 - Continuum wiggles near absorption edges

Now where are the atomic data and processes?

Now where are the atomic data and processes?

- For full plasma model, need many (12+) atomic processes:
 - Collisional ionisation
 - Collisional excitation
 - Resonant excitation
 - Dielectronic recombination
 - Radiative transition probabilities
 - Auto-ionisation rates
 - Radiative Recombination rates
 - Photoionisation cross sections
 - Escape factors
 - Line energies
 - Charge exchange cross sections
 - Proton excitation
 - Etc.

• Each process has its own intricacies and (atomic) data

Plasma codes & models

Code	Applicable	Notes	
Raymond-Smith	CIE	Deprecated, use APEC	
APEC/ATOMDB	CIE, NEI, CX		
Chianti	CIE	Widely used for Sun	
Mekal	CIE, NEI	Deprecated, use SPEX	
SPEX	CIE, NEI, PIE, CX		
XSTAR	PIE mainly	Evolved from X-ray band	
Cloudy	PIE mainly	Evolved from optical/UV	

- All codes contain atomic data and algorithms to produce spectra
- Different techniques:
 - \circ on the fly or pre-calculated
 - $\circ \quad \mbox{Original data or approximated data}$
 - Not always all processes included
- Level of modernity data can differ from code to code and process to process

All things can be important

Real example:

- "old" (pre-2000) mekal code had typo in Fe XVI lines (10x too strong) [not important for CCD but matters for grating]
- For RGS band, Fe XVI "coldest" Fe ion
- Line not seen in spectra, but predicted
- → Make emission measure at low T lower in the model
- O VII formed at same temperatures
- →Make O abundance higher
- → Strong bias

Most codes had/have similar "glitches"

Analytical versus numerical

- Students learn to solve Schrödinger's equation $ih\partial\psi/\partial t=H \psi$ for Hydrogen analytically
- This is only case you can do this exact
- More than 1 electron
 numerical methods
- Relativistic corrections important for e.g. Fe

R-matrix versus distorted wave

- Two methods used frequently to calculate interactions with free electrons in complex ions:
- R-matrix is most accurate, but can deal with fewer levels
- Distorted wave (DW) is less accurate, but can deal with more levels
- Example DW codes: HULLAC (Klapisch et al.), FAC (M.F. Gu et al.)

Now are the classical Bohr atom calculation useless?

- Not at all, can give you useful insights
- with E_{H} =13.6 eV, a_{0} =0.53 Å, α = 1/137
- Energy $E_n = -E_H Z^2 / n^2$ - Higher charge, higher E
- *Size* $r = n^2 a_0 / Z$

- Higher charge, more compact

- Orbital velocity $v/c = \alpha Z/n$
 - For Z=26 (hydrogenic Fe) already significant relativistic effects (~ 20%)
 - Strong interaction if passing particle has this velocity

Worked-out example: collisional ionisation

- Collision of a free electron with an atom can cause ionisation
- Several processes need to be accounted for:
 - Direct ionisation
 - Direct multiple ionisation (for high-E electrons)
 - Excitation autoionisation
- Highest rate if passing electron has similar speed as electron it kicks out

Worked-out example: collisional ionisation

Worked-out example: collisional ionisation

Cascades:

- One primary ionisation can lead to multiple ionisation
- Electrons from higher shells cascade down through fluorescent emission & Auger transitions
- Complex process to calculate because of many combinations

Kaastra & Mewe 1993

Need for updates

- Example: Mewe approximated radiative recombination by local power-law
- Okay for CIE (dominated by collisional excitation) but:
- Large *deviations* for recombining / ionising plasma when true shape is used (Mao et al. 2016)
- Strong consequences for derived O, N abundances in clusters

log rate →	
	t T _{max}

Dielectronic recombination

Phase 1: Excitation & capture Phase 2: Radiative decay Final state: Li-like ion

Why is dielectronic recombination hard to handle?

- Number of levels (combination of principal quantum number n and angular momentum ℓ) scales ∝ n² (because 0<ℓ<n)

- In the DR process, doubly excited levels involved → scales ∝ n⁴
- For some ions, need to take into account levels up to n = O(10) to get accurate results

Resonant excitation

- First steps equal to dielectronic recombination:
 - Free electron caught while bound electron excited (with energy conservation, no radiation)
 - This is doubly excited state (2 electrons in excited level)
- Now the difference with DR:
 - Auto-ionization, i.e. no radiation but one electron ejected, and other electron to lower level but not to the ground level
 - Ion is left in excited state
- Less energy needed for the initial free electron to start the process
- Excitation (albeit resonant) possible below the threshold energy
- See next talk by Štofanová for one application

Ongoing updates of SPEX: resonant excitation processes (Liyi Gu et al. 2019)

- Update Fe L-shell ion spectra
- Focus on Resonant Excitation & Dielectronic Recombination
- Use FAC code with
 - 30.000 energy levels
 - 500.000 radiative transitions
 - 40.000 Auger rates
- Months of computation time
- Important astrophysical implications

Final note on accuracies

- Few quantities calculated up to many digits (energies for H-like ions)
- Most quantities uncertain by several %, up to 10-20%
- Sometimes larger deviations (often human errors)
- Need to validate using independent models
- → APEC (Smith et al) & SPEX (Kaastra et al.):
 - Will not merge their codes
 - Are not competitors
 - Are friendly colleagues

Conservative

If it's not a power law, it can't be true

Modern times are coming

Conclusions

- Atomic data matter
- Getting accurate atomic data is not trivial
- However, they are needed to avoid biased astrophysical results
- Atomic data intimately linked to the models in which they are applied
- Try to understand the basics of the models to appreciate your astrophysical results