Laboratory Astrophysics Needs for XRISM and Beyond

Brian Williams (NASA/GSFC)

On behalf of Tim Kallman and many others in the "XRISM Laboratory Astrophysics Working Group"

Background

- *Hitomi* confirmed what many people already knew... the existing atomic databases, codes, and laboratory measurements are insufficient to handle the "next generation" of X-ray spectroscopy
- *XRISM* scheduled for launch in 2022; can't solve all these problems by then, but can at least identify highest priorities and begin to make progress
- Founded "Laboratory Astrophysics Working Group," a team within XRISM project to study this
- Submitted two white papers to Astro2020 Decadal Survey last week

Current people: **Tim Kallman (Chair, NASA GSFC), Jelle Kaastra (Vice-chair, SRON)**, Greg Brown (LLNL), Lia Corrales (U. Michigan), Elisa Costantini (SRON), Renata Cumbee (NASA GSFC), Megan Eckart (LLNL), Teru Enoto (Kyoto), Edmund Hodges-Kluck (NASA GSFC), Liyi Gu (Riken), Kazunori Ishibashi (Nagoya), Maurice Leutenegger (NASA GSFC), Michael Loewenstein (NASA GSFC), Shinya Nakashima (Riken), Scott Porter (NASA GSFC), Makoto Sawada (NASA GSFC), Randall Smith (SAO), Brian Williams (NASA GSFC), Tahir Yaqoob (NASA GSFC)

Problems to be solved

- state-of-art calculations can differ by up to 70% @ 4 keV
- Fe XXIV inner-shell radiative/Auger rates and branching ratios differ by up to 50%.
- As a result, Fe abundance differ by 16%.
- Similar difference in a few H-like excitations.

H/He/Li-like are the simplest systems!

Figure 1 from this paper

Atomic data and spectral modeling constraints from high-resolution X-ray observations of the Perseus cluster with Hitomi* d

Hitomi Collaboration, Felix Aharonian, Hiroki Akamatsu, Fumie Akimoto, Steven W Allen, Lorella Angelini, Marc Audard, Hisamitsu Awaki, Magnus Axelsson, Aya Bamba, Marshall W Bautz ... Show more Author Notes

Publications of the Astronomical Society of Japan, Volume 70, Issue 2, March 2018, 12, https://doi.org/10.1093/pasj/psx156

Published: 11 April 2018 Article history v

Atomic Data: H-like ions

For Si XIV, leads to 30% difference line flux -> 30% difference deduced abundance

Atomic Data: He-like ions

Impact of charge-state distributions

Accuracy of transition energies for K and L-shell lines

Accuracy of transition energies for K and L-shell lines

A precise and accurate determination of:

- wavelengths for common transitions
- charge state distributions
- absorption cross sections
- collisional and radiative rates
- line widths
- energy edges and shapes
- line fluxes

A precise and accurate determination of:

- wavelengths for common transitions
- charge state distributions
- absorption cross sections
- collisional and radiative rates
- line widths
- energy edges and shapes
- line fluxes
- plus estimates of uncertainties on all of these quantities

A precise and accurate determination of:

- wavelengths for common transitions
- charge state distributions
- absorption cross sections
- collisional and radiative rates
- line widths
- energy edges and shapes
- line fluxes
- plus estimates of uncertainties on all of these quantities

The goal for the coming years should be to reach the point where our scientific progress is limited by observational uncertainties, not laboratory ones.

XRISM Project convened Lab Astro WG in late 2018 to assess current state of field. Started by crowd-sourcing project out to XRISM Science Team to determine most important measurements XRISM will make, and what is required for these.

, Sci	nce Case # Topic	e Science Goal	Physical quantity	: Required	r Spectral Models	0 Spectral Measurement		Line or feature	Approximat	E Specific line	Requirement on	M Required ac	11 References	o Current best	P Reference(s) for	Science Priority	n e
	41 Young SNR	Measure the expansion velocity of SN 1006 (and	Line-of-sight velocity	Precision 3%	Collisional + NEI	Separate redshifted.	Precision 3	% O VII	energy (keV	7 resonance	transition energy	10 eV		measurement 0.03 eV	measurement	(A,B,C)	ASTRO-H WP indicates that multiple
244		others?) in individual elements (e.g., 0 and 5i)			plasma	blueshifted components of O. Si lines	-		-								components along LOS may complicate the measurement (3% may not be
25								0.1011		14 M	transition energy	8.44		0.03.44	Isler, Jupen & Martinson (19 Wiese 1996 (NIST)		achievobie)
285								Si XIII	11	17 resonance	transition energy	3.eV		0.3 eV	Martin & Zalubas 1983		
147	12 10 10 10 10 10		The shaft second burgers	200	Collisional -	Des estis anno 20		SI XIV	2.	0	transition energy	2.4V		4.5.46	10051-1 201 0205		
149	42 Young SNR	by measuring the energy spectrum of supra-thermal	efficiency	20%	collsional + nonthermal	satellite lines of Fe XXV	10	Fe XXII	6.	A DRiat	transition energy	10%		<1.5 eV	1986Api3048385 1986Api3048385	•	
171		electrons			etectron distribution	teo)		Fe XXII Fe XXIV	6.	52 DRsat	emissivity	20%		<1.5 eV ~20% but no quantitative	1985Ap1304.8385 1993Ap14098468		
-								Fe XXIII	6.	4 DRsat	emissivity	20%		~20% but no quantitative	1993ApJ4098468		
								Fe XXI	6.	2 DRuat	emissivity	20%		comparison ~20% but no guantitative	1993ApJ., 409, 8468		
175	43 Young SNR	6. Measure plasma condition and abundances of heavy	Electron temporature	5-10%	Collisional + NEI	Line ratios He b/a	5-10%	fe XXV Ka		7 1950 2008	emissivity	555		comparison			K shell emissions of even-Z elements and
275		elements (C-NI) in ionizing and recombining plasma			plasma (both	and/or Ly b/a		Fe XXV Kb	71	8	emissivity	5%					L-shell of Fe and Ni should have higher
277					recombining)			Fe XXVI Kb	8	IS	emissivity	5%					more important in Athena era. We need
								Fe & Ni L-shell (probably L-shell of Si, S, Ar, and Ca as			emissivity	5%					(ionization/excitation/recombination
174								well) (this is potentially a lot of lines)									ion/transition (so that ion
279			ion balance	5-10%		Relative strength among	5-10%	Fe XXV Ka		7 resonance	emissivity	5%					independently)
281						H-like, He-like, and satellite lines (after		Fe XXIV Fe XXII	6.	5 DRuat 54 DRuat	emissivity	10%					kTe range: 0.5-5 keV
182						determining T_e)		Fe XXXI Fe XXXII Ka	6.	2 DRuat	emissivity	10%					
184								Fe XXV	6.	17 DRuat	emissivity	10%					
185								No DL	0.1	12 resonance	emissivity	5%					
287								Si XIII	1	15 resonance 17 resonance	emissivity emissivity	5%					
289								S XV O VIII	2/	6 resonance	emissivity emissivity	5%					
281								No X Me XI	10	12	emissivity	5%					
283								Si XIV	2.0	0	emissivity	5%					
			Abundance	59		Line intensity of strong	5	K (this is a lot of lines)			emissivity	5%					
						element											
28	44 Young SNR	 Measure abundance of Pe-peak elements that are usually in very low-ionization state in young SNRs 	ion balance		(ionizing plasma)	Phorescence Ka and Kb emission of Cr, Mn, Fe,		abundance			energies of gas-phase	~				•	
						-					Cr, Mn, Fe, and Ni						
287			Abundance	10%				Line energy to constrain charge state		59	6 Lab: fluorescent yields of these ions/elements	504					
198	45 Shocks &	Measure the gas density in pion target material in SNRs	n.e.	50%	Collisional plasma	Detect OVII, OVIII,	25	s o vii	0.5	7 resonance	transition energy	no requirem	ent	0.03 eV	Isler, Jupen & Martinson (19	8	the limiting factor will not be atomic data
180	Acceleration	by detecting weak thermal emission	-			strong Fe-L (e.g., Fe XVII 0.82 keVI lines		O VIII Fe XVIII	0.0	5	transition energy	no requirem	ent	0.03 eV	Wiese 1996 (NIST) 1998Apt 502 10158		-
101	46 Shocks &	Search for shocked stellar wind material (thermal	n_4	50%	Collisional plasma	Detect OVII, OVIII,	25	N O VII	0.1	7 resonance	transition energy	no requirem	ent	0.03 #V	Isler, Jupen & Martinson (19	•	
184	Acceleration	emission in gamma-ray on a res, as well as purseo emission				0.82 keV] lines		Fe XVII	0.1	12	transition energy	no requirem	ent.	0.03 eV	WHEN 2326 (NIST)	_	
385	47 Shocks & Acceleration	Detect nonthermal electrons in SNRs and merging clusters	spectrum	25%	collisional plasma	Fe XXV DR/He-a line ratio	15	K Fe XXIV	6.0	5 DRsat	emissivity	10%				8	Based on SNR case above, is it the same for clusters?
205 187								Fe XXII Fe XXII	6.	4 DRsat 2 DRsat	emissivity emissivity	10%					
228	48 AGN Winds	Determine the amount of highly ionized gas and outflow	Column density.	EW to 1 eV	PIE + disk wind	Detect absorption down	EW to 1 eV	Fe XXV Ka	6	0 resonance	transition energy	1.41				A	The source of Fe-K lines will also produce
389		location for winds using Fe XXV and Fe XXVI in a modest sample of bright AGN	ionization parameter			to NH<1e21 cm^-2, and model to get instruction			-								lines in the Fe-L region of the spectrum that can be used to constrain parameters
210						parameter/number of		Fe XXVI Ka	6.	6	transition energy	1 eV					
212						20105		Fe XXII	6.	64 DRsat	transition energy	2 eV					
218								Pe XXII Ni XXIVII	6.	2 DRsat 2 resonance	transition energy transition energy	2 eV 2 eV					
215								Fe XXV Ka Fe XXVI Ka	6.	10 resonance 16	Code: DR vs. CE cooling Code: DR vs. CE cooling	77 7?					
218								Fe XXIV Fe XXII	6.	5 DRsat 54 DRsat	emissivity	20%					we don't really want emissivity.
219								Fe XXII Fe XXV Ka	6.	2 DRsat	emissivity Code: 88 rates	20%					
101	an activity of	Bata di chen fast a diferen la maltinia lines ta abtala fian	Column Dessile	478	NF + debuiled	En White and En White Enk		Fe XXVI Ka	6.	6	Code: RR rates	77					
100	45 Auto Winds	detections and column densities	Column Denarcy	125	PIC + Gisk wind	(also S XVI, Si XIV, Ca XX,	15	Fe XXVI Ka	6.	16	transition energy	1344				•	
324						Se Aving		(which lines??)			transition energy						
335			Line-of-sight velocity	19	(PIE + disk wind)	Fe XXV, Fe XXVII line	1	N NI XOIVII	7.	12	transition energy	2.4V					identify *emission* line blends, even
124						width [after identifying the lines]		NI XOD/III		8	transition energy	2 eV					though searching for UFO absorption
327								Ni XXIVII	7.1	12	emissivity	10%					
338								Ni XXVIII	8.	8	emissivity	10%					
329 130			ionization parameter	109	PIE + disk wind	Fe XXV, Fe XXVI Ka, Kb line ratios	10	% Fe XXV Ka Fe XXVI Ka	6	0 resonance 16	Code: ion fractions Code: ion fractions	5% 5%					
221	50 AGN Winds	Measure the variability of ultra-fact outflows through	Column density	sieži cmAž	(PIE = disk wind)	Fe XXV, Fe XXVI FW	<1e21 cmA	Fe XXVI Kb 2 Fe XXV Ka	8	15 resonance	Code: ion fractions transition energy	5%				8	
222	to mark winds	the fraction of observations with UFOs or changes in column density	and a second y			and a second part		Fe XXVII Ka	6.	16	transition energy	1 eV					
254								(which lines??)			a share on energy						
225	51 AGN Winds	Measure the velocity and EW of Compton-thick	Line-of-sight velocity	300 km/s	(PIE + disk wind)	Fe XXVI Ka, Kb, K-edge	5 eV	Fe XXVI Ka	6.	6	transition energy	3 eV				8	outflows are detected closer to 9 keV
226		obscurers/outflows to determine the kinetic luminosity				energies, line profile (width + fitting for		Fe XXVI Kb Fe-K edge	8.	15 10	transition energy transition energy	3 eV 3 eV					
129			Column density	109	PIE + disk wind	Fe XXVI Ka, Kb, K-edge depth	10	K Fe XXVI Ka Fe XXVI Kb	6.	16 15	oscillator strength oscillator strength	5%					
340	52 AGN Reflectio	Measure the density, size, and mean bulk motion with	Mean motion	50 km/s	Reflection +	Fel+	50 km/s	Fe I-XVI Ka	6	10	transition energy	0.5-1 eV				A	
342		respect to the observer of the torus from type 2 AGN			Comptonization +	(not-so-)near-neutral Ka cantroid		Fe I-XVI Ka	6.	10	fluorescent yields	10% relative t	o that of Fe Rb				To use Ka/Kb flux ratio to constrain lowization state
340			Size	10%	PIE	Fe Ka line width (or distance between line	S0 km/s	Fe I-XVI Ka	6.	10	transition energy	10%					the basic science case is laid out in both AGN reflection and browthand
-				1	(DEL) (S. contine D. contin	splits)	Barren an	E So VIN Ka			am halida						spectroscopy (NGC 4945)
344			0	10%	kinetics	density from Fe XXV Ka	Autors to 10	En VINCES	6.	a resonance	emissionly	10%					triplets (based on Mrk 3 case)
345						He-like triplets)		re XXV Ka	6.	ion	antiastry	10%					
242	53 AGN Reflectio	 Measure the size/shape of the Compton shoulder around Fe I (+near-neutrals) Ka to determine the 	Torus covering fraction and column density	38%	MCRT, different Fe compounds	Fitting shoulder shape to look for multiple	fraction	All blends All blends	6.	10	emissivity	2100					what lines are these? There aren't many!
		physical parematers of the torus				scattering, atomic vs. molecular iron, and		Fe I Ka Compton shoulder	6.	0	Code: Compton shoulder shape for different	10% in C5 frac	tion				
-						measure the scattering angle					incident angle, composition						
149	SA AGN DURATION	Insiste reflection from the inner regime of two 1.4504 https://	Reflection component		Reflection	Read in the loss could be	201/2	Fe I (mear neutral) Ka	6.	0	fluorescent yields	11 2 #14				c	
201	are many mendecolo	simultaneously modeling the disk reflection and seft escena	flux, disk ionization state, emissivity/imadiation	-	Comptonization,	shape		Fe I (mear neutral) Ka	6.	10	Ruprescent vields	77					
162	SE Gustan	Mine unlexity fields in charters to many an both from	tino of cipits unleader	20 km fr	Walkings about	Canterid chiltr in Fe 200	85.04	En VIVI Va		0 0000		1.44					most of holess is based on 45700 LUMP.
363	55 Clusters	identify sloshing motion, etc.	cite-or sight velocity	30 km/s	(consional plasma)	Ka, Fe XVI	4.5 eV	TE XXY Ka	6.	o resonance	transition energy	100				•	not Hitomi Perseus papers
-154								the Ville		A 10.21 S	TRADE TO A DECEMBER OF	1.0.00					

Торіс	Science Goal	Physical quantity	Required Precision	Spectral Models	Spectral Measurement	Required Precision	Line or feature	Approximate Spece energy (keV)	cific line	Requirement on	Required a	o References	Current best measurement
ISM and CGM	Measure the dust composition from absorption edges towards LMXBs in outburst with NH > 1e22 cm^-2	Dust chemical composition	~10%	Dust structure/ISM absorption model	Location, depth of Si K edge Location, depth of Fe K edge	10%	Si-K edge	1.84	1	transition energy	<2 eV		0.2 eV
							Si-K edge	1.84		absorption depth	109	6	
						15-20%	Fe-K edge	7.10	1	transition energy	<3eV		0.04 eV
							Fe-K edge	7.10		absorption depth	109	6	
					Detect edges for less abundant elements	10-20%	Edges for e.g. S, Ca	2.47, 4.03	1	transition energy	<2 eV for S,	<3 eV for Ca	0.05 eV

Торіс	Science Goal	Physical quantity	Required Precision	Spectral Models	Spectral Measurement	Required Precision	Line or feature	Approximate Specific line energy (keV)	Requirement on	Required ac Re	eferences	Current best measurement
ISM and CGM	Measure the dust composition from absorption edges towards LMXBs in outburst with NH > 1e22 cm^-2	Dust chemical composition	~10%	Dust structure/ISM absorption model	Location, depth of Si K edge	10%	Si-K edge	1.84	transition energy	<2 eV		0.2 eV
							Si-K edge	1.84	absorption depth	10%		
					Location, depth of Fe K edge	h of Fe K 15-20%	Fe-K edge	7.10	transition energy	<3eV		0.04 eV
							Fe-K edge	7.10	absorption depth	10%		
					Detect edges for less abundant elements	10-20%	Edges for e.g. S, Ca	2.47, 4.03	transition energy	<2 eV for S, <3	eV for Ca	0.05 eV

cience Case #	Торіс	Science Goal	Physical quantity	Required Precision	Spectral Models	Spectral Measurement	Required Precision	Line or feature	Approximate energy (keV)	Specific line	Requirement on	Required ac	References	Current best measurement
								Si XIV	2.00		transition energy	2 eV		
42	Young SNR	Determine how shock energy is turned into cosmic rays	Shock thermalization	20%	Collisional +	Line ratios among DR	10%	Fe XXIV	6.65	DRsat	transition energy	10%		<1.5 eV
		by measuring the energy spectrum of supra-thermal	efficiency		nonthermal	satellite lines of Fe XXV		Fe XXIII	6.64	DRsat	transition energy	10%		<1.5 eV
		electrons			electron distribution	He, Li (maybe Si is OK,		Fe XXII	6.62	DRsat	transition energy	10%		<1.5 eV
						too)		Fe XXIV	6.65	DRsat	emissivity	20%		~20% but no quantitative comparison
								Fe XXIII	6.64	DRsat	emissivity	20%		~20% but no quantitative comparison
								Fe XXII	6.62	DRsat	emissivity	20%		~20% but no quantitative

Торіс	Science Goal	Physical quantity	Required Precision	Spectral Models	Spectral Measurement	Required Precision	Line or feature	Approximate energy (keV)	Specific line	Requirement on	Required ac	References	Current best measurement
ISM and CGM	Measure the dust composition from absorption edges towards LMXBs in outburst with NH > 1e22 cm^-2	Dust chemical composition	~10%	Dust structure/ISM absorption model	Location, depth of Si K edge	10%	Si-K edge	1.84		transition energy	<2 eV		0.2 eV
							Si-K edge	1.84		absorption depth	10%		
					Location, depth of Fe K edge	for less 10-20%	Fe-K edge	7.10		transition energy	<3eV		0.04 eV
							Fe-K edge	7.10		absorption depth	10%		
					Detect edges for less abundant elements		Edges for e.g. S, Ca	2.47, 4.03		transition energy	<2 eV for S, <	<3 eV for Ca	0.05 eV

icience Case #	Торіс	Science Goal	Physical quantity	Required Precision	Spectral Models	Spectral Measurement	Required Precision	Line or feature	Approximate energy (keV)	Specific line	Requirement on	Required ac	References	Current best measurement
								Si XIV	2.00)	transition energy	2 eV		
42	Young SNR	Determine how shock energy is turned into cosmic rays	Shock thermalization	20%	Collisional +	Line ratios among DR	10%	Fe XXIV	6.65	5 DRsat	transition energy	10%		<1.5 eV
		by measuring the energy spectrum of supra-thermal	efficiency		nonthermal	satellite lines of Fe XXV		Fe XXIII	6.64	DRsat	transition energy	10%		<1.5 eV
		electrons			electron distribution	He, Li (maybe Si is OK,		Fe XXII	6.62	2 DRsat	transition energy	10%		<1.5 eV
						too)		Fe XXIV	6.65	5 DRsat	emissivity	20%		~20% but no quantitative comparison
								Fe XXIII	6.64	I DRsat	emissivity	20%		~20% but no quantitative comparison
								Fe XXII	6.62	2 DRsat	emissivity	20%		~20% but no quantitative

Science Case #	Торіс	Science Goal	Physical quantity	Required Precision	Spectral Models	Spectral Measurement	Required Precision	Line or feature	Approximate Specific line energy (keV)	Requirement on	Required ac References	Current best measurement
9	Protostars	Measure the orbital period and velocity of matter	Line-of-sight velocity	50 km/s	(Collisional plasma)	Fe I Ka centroid	1 eV	Fe I (+near neutral) Ka	6.40	transition energy	0.5 eV	
10	Protostars	Detect X-ray jets that accompany flares in protostars by measuring a Doppler shift that coincides with an increase in count rate	Line-of-sight velocity	200 km/s	(Collisional plasma)	Monitoring Fe XXV Ka centroid	4 eV	Fe XXV Ka	6.70 resonance	transition energy	2 eV	
11	Protostars	Measure accurate protostar temperatures through Fe XXV/Fe XXVI lines (insensitive to absorption)	T_e	10%	Collisional plasma	EW ratio of Fe XXVI and Fe XXV Ka, Fe XXV Ka	10%	Fe XXV Ka Fe XXVI Ka	6.70 resonance 6.96	emissivity emissivity	5% 5%	

Lab Astro WG just (on July 10th) submitted two companion white papers to Astro2020 Decadal Survey

"Laboratory Astrophysics Needs for X-ray Calorimeter Observatories" Lead author: Tim Kallman; focus: science above 2 keV

"Laboratory Astrophysics Needs for X-ray Grating Spectrometers" Lead author: Randall Smith; focus: science below 2 keV

(US-based) Conclusions: Current lab astro funding comes form NASA APRA program. Supports ~25 programs per year (for three years each). We propose a modest increase in funding of \$1.5M/year. This will support ~4 lab groups (\$250K/ year) using existing facilities, as well as place one new EBIT at a light source (\$2M). Also support ~5 grad students or postdocs doing theoretical work