

ATHENA.

The Athena mission

Status and Community Preparation

Didier Barret

X-IFU Principal Investigator

Directeur de Recherche Institut de Recherche en Astrophysique et Planétologie CNRS, UPS, OMP, CNES dbarret@irap.omp.eu @DidierBarret

XCALIBUR 2019, WINCHESTER, JULY 15-19 TH, 2019

Thanks

Special thanks:

- to the Athena Science Study Team: D. Barret, A. Decourchelle, A.C. Fabian, M. Guainazzi, J.W. den Herder, H. Matsumoto, K. Nandra, L. Piro, R. Smith, R. Willingale
- to the Athena Working Group and Topical Panel chairs and members
- to the ESA study team
- to the Athena Community Office (ACO)
- to the WFI instrument consortium
- to the X-ray Integral Field Unit Consortium

Outline

- Brief recap of what Athena is
- Project status, including X-IFU and technology development status
- Athena organization and community involvement, including some aspects of the Athena science management plan
- Conclusions: We are on safe track for a launch in early 2030s

Athena

- Athena: Advanced Telescope for High ENergy Astrophysics
- Second Large mission of the European Space Agency Cosmic Vision
 Science program (the third being the LISA gravitational wave mission)
- Dedicated to The Hot and Energetic Universe
 - With broad impacts in many corners of astrophysics: stars, galaxies, planets... which define the Observatory science of Athena
- One large aperture telescope and two complementary instruments

The Athena science payload : Mirror

- Single monolithic large aperture grazing incidence movable X-ray telescope
 - Silicon Pore Optics developed by ESA
 - 1.4 m2 @ 1 keV, 0.25 m2 @ 6 keV (requirements)
 - ▶ 5" (HEW) requirement

Credits: R. Willingale — ESA/Cosine

The Athena science payload: WFI

- Wide Field Imager (WFI) PI K. Nandra (MPE)
 - Silicon Active Pixel Detector based on DEPFET technology
 - < 80 (< 170) eV spectral resolution @ 1 (7) keV
 - 2.2 ' ' pixel size (PSF oversampling)
 - Field of view: $40' \times 40'$ square
 - Separate chip for fast readout of brightest sources
 - Consortium led by MPE, with other European partners (DE, AT, DK, FR, IT, PL, UK, CH, P & GR) and NASA

Credits: MPE and WFI team

The Athena science payload : X-IFU

- X-ray Integral Field Unit (X-IFU): Co-PIs: J.W den Herder (SRON) & L. Piro (INAF)
 - Large format micro-calorimeter array (Transition Edge Sensors)
 - 2.5 eV spectral resolution up to 7 keV (frequency domain multiplexing)
 - 5' hexagonal field of view (equivalent diameter)
 - Low background due to a cryogenic anti-coïncidence detector
 - Capability to observe bright sources (1 Crab) thanks to the mirror defocussing
 - Cryogenic instrument cooled down to 50 mK by a multi-stage cryogenic chain
 - Consortium led by IRAP/CNES-F, with NL and IT and further ESA member state contributions from BE, CZ, FI, DE, IR, PL, ES, CH and contributions from Japan and the United States

Credits: NASA/GSFC & CNES/IRAP/ESA and X-IFU team

The Athena spacecraft

- Focal length: 12 meters (total height about 15 meters)
- Overall mass: 7 tons (X-IFU ~ 1 ton)
- 7 kWatts
- 4 year nominal mission lifetime with consumables/mechanical parts designed for 10 years
- Agile satellite to respond to ToO alerts in a few hours
- Launch to halo orbit L2 (or L1) by Ariane 6

The Athena satellite and the Science Instrument Module (Credits to ESA)(credits to ESA)

From XRISM to Athena: Perseus

XRISM (Hitomi)

Credits: J. Sanders

Project status

- Instrument consortia formally appointed by ESA (Dec 2018)
- Both instruments successfully completed their feasibility study phase (Phase A) and can now proceed to phase B1 (since April 2019)
 - Their baseline designs meet the performance requirements
 - Actions raised by the review are being implemented with the goal of :
 - consolidating our baseline designs and interfaces with the spacecraft
 - consolidating and running our technology developments plans
 - consolidating the programatic aspects
- Next review to come (Sept. 2019): End of phase A review at mission level (including mirror and spacecraft as ESA led elements), so-called Mission Formulation Review (MFR)
 - According to the ESA study team: *Athena is in good shape for MFR*

X-IFU status

- X-IFU passed the IPRR with a baseline declared feasible
 - Micro-vibrations and cooling chain complexity identified as risks
- Delta-study conducted by ESA & CNES to see how the science instrument module could ease the accommodation of the X-IFU
 - By providing more passive cooling to the instrument in a so-called « cryo-SIM » configuration
- Management meeting of July 8th concluded that the baseline configuration is confirmed weighting benefits versus overall system complexity
- No disruption of activities, and optimizations are now under investigation as part of the normal phase B1
 - To address micro-vibrations
 - To reduce the number of coolers
 - At iso-performances

Technology: optics

- Vigorous optics development plan on-going at ESA/Cosine:
 - Steady and continuous improvement in the optics towards 5" HEW
- A sensitivity analysis led by the ASST concluded that a resolution of 6.5" has a clear negative impact on a number of Athena science objectives, with the impact considered very severe if the HEW were to degrade to >8"
 - WFI science more severely impacted than X-IFU science
 - ▶ Today 7" is achieved on 70% of the plate area
- Angular resolution optimization activities will continue beyond MFR
- Various coatings for the optics under investigation (Ir, Ir+SiC), as well as ways of maximizing the effective area of the mirror at both 1 and 7 keV

Technology: instruments

- Prime focus is X-IFU
- Consistent assessment of the level of readiness of X-IFU critical technologies between ESA and X-IFU team
 - On track for mission adoption although schedule is tight
 - Significant progresses made towards reaching 2.5 eV resolution with the baseline frequency domain multiplexing
 - System level demonstration to be performed by the demonstrator of the X-IFU cooling chain to include a demonstrator of the focal plane assembly (32 x 32 TES array) and readout electronics
- Technology demonstration to be completed by mission adoption in Q3-4/21
- 10 year implementation time to launch in early 2030's
 6 month provision of the calibration time for X-IFU !

Athena organization

- The Athena Science Study Team is an ESA-appointed body of astronomers, including the ESA Study Scientist, the instrument PIs and international representatives from JAXA and NASA.
 - Define the scientific requirements of the mission and to advise ESA on all aspects related to the scientific performance of Athena.
- The ASST has nominated 5 Working Groups on:
 - Hot Universe, Energetic Universe, Observatory Science, Telescope, Mission performance
 - And 21 topical panels covering sub-topics
 - Yearly calls enable you to join

■ The WG advise the ASST which in turn advises the ESA study team

- e.g. consolidating science requirements, evaluating the impact of performance changes, providing inputs on calibration, etc.
- ▶ Refinements to the organization to be discussed with the Chairs (Dec 2019)

Athena Community Office (ACO)

The Athena community gathers today about 800 researchers

- Bringing their expertise and the advises to the project is key
- Major effort required to get the community involved

■ To run it, the ASST appointed the Athena Community Office to :

- Organize and optimize community efforts
- Pass on the information from the ASST to the community
- Develop communication and outreach activities around Athena
 - Led by IFCA (CSIC-UC) in Spain, with contributions from IRAP, MPE and UniGe
- More info at <u>www.the-athena-x-ray-observatory.eu</u> and on the social networks

How to get engaged and prepared?

- Joining the consortia providing the instruments and their associated Instrument Science Centers (ISCs);
 - A bit late for the instruments, but opportunities may remain for the ISCs
- Joining or being part of one of the topical panels
 - Getting trained through SIXTE workshop
 - Participating to activities: e.g. a series of refereed journal papers will be prepared in time for mission adoption (for the so-called red book):
 - List of papers will be based on the received topical panel chair proposals
 - Complete and uniform coverage of existing science goals of Athena, as well as possible new science ideas discussed
- Get to work or /support XRISM/Resolve data, ensuring that special needs for X-IFU will be properly fed to the system (e.g. new tools)
- Becoming an Athena guest observers, and joining Key Programme team and in their preparatory work

Type of observing programs

- KP require the study of well-chosen samples of objects with particular properties
- Key Programs (KP) will be defined before launch by an ad'hoc committee taking consideration of the evolution of the scientific landscape

Observing time split

Core science program defines today about 73 % of the available observing time (=107 Ms over a 4 year mission lifetime with 85% efficiency)
 Numbers to be taken as indicative as they depend on the mission performance

Types of observing times

- Guaranteed Time (24%, tbc) and Guest Observer time (16%) to be spent on Key Programs, the rest being used for the General Program
 - GT will reduce to 5% (tbc) during mission extension
- Pending approval by the ESA Science Program Committee at the time of mission adoption (Q4/2021)

Conclusions

- Athena is your next large X-ray observatory
- Athena has revolutionary X-ray capabilities
 - Spatially resolved high resolution spectroscopy
 - Wide field imaging
- **XRISM** will open a new era of X-ray astronomy
 - Challenges for XRISM/Athena: calibration, background (+CX), atomic physics, data analysis
- Athena is now on the safe path for a launch in the early 2030s
 - Case is made to have overlap between Athena and LISA
- Keep using XMM-Newton/Chandra, get ready for XRISM, and keep supporting and promoting Athena
 - And start now preparing for the post-Athena mission in the voyage2050 for the long term science planning of ESA