High-Resolution X-Ray Spectroscopy of Southeastern Knots in Tycho's SNR with XMM-Newton/RGS

Satoru Katsuda (Saitama Univ., Japan), Brian J. Williams (NASA GSFC), et al.

Tycho's Supernova Remnant (SN 1572)

- A proto-typical Type Ia SN remnant (from a light-echo spectrum)
- Surviving companion not yet found.
 → SD vs. DD still unclear.
- Balmer-dominated shocks
- Cosmic-ray acceleration
- Clumpy SN ejecta
 Possibly due to initial clumpiness in the explosion (Williams+2017; Sato+2019)

Southeastern Protrusion

XMM-Newton/RGS Observation

XMM-Newton observation

PI: B. J. Williams Date: 2017-08-04 Exposure time: 150 ks

<u>Goals</u>

- Measuring ion temperatures to see ion-e⁻ T non-equilibration
- 2) Measuring O abundance to better understand SD vs. DD
- 3) Fe L diagnostics

RGS Spectra

The first clear detection of O K lines from Tycho's SNR

Spectral Fitting of the C2 Spectrum

Model = (1) ONeMg + (2) IME + (3) Fe + (4) power-law

Abundances

The SD scenario is slightly better than DD.
 (considering possible ONeMg contamination from the swept-up ISM)

- Fe abundance is very low, suggesting its origin in the outer envelope.

Line Broadening

Best-fit broadening (linearly scaled with energy): 1 σ = 30.1 ± 2.1 eV @ 6 keV, or 1 σ = 5 eV @ 1 keV

 $kT_a = (\sigma / E_0)^2 * m_a c^2 = (30 \text{ eV} / 6000 \text{ eV})^2 * M_a * 938000 \text{ keV}$

kТo	kT _{Ne}	kT_{Mg}	kT _{si}	kT _s	kТ _{Аr}	kT _{Ca}	kT _{Fe}
0.4 ± 0.05	0.5 ± 0.07	0.6 ± 0.08	0.7 ± 0.10	0.8 ± 0.11	0.9 ± 0.12	1.0 ± 0.14	1.4 ± 0.19

in units of MeV

Velocity of the SE Protrusion

$$kT_a = 3/16 m_a V_{shock}^2$$

	kТ _о	kT _{Ne}	kT _{Mg}	kT _{Si}	kT _s	kT _{Ar}	kT _{Ca}	kT _{Fe}
Observed	0.4 ± 0.05	0.5 ± 0.07	0.6 ± 0.08	0.7 ± 0.10	0.8 ± 0.11	0.9 ± 0.12	1.0 ± 0.14	1.4 ± 0.19
FS heating	2.1	2.6	3.2	3.7	4.2	4.7	5.3	7.4

The observed temperatures (line widths) are much higher (narrower) than expected from the forward shock heating. \rightarrow The knots were heated by a "slower" reverse shock. Or, most of the shock energy goes into particle acceleration.

Future Prospects for XRISM

The line width measurements with the RGS are not so solid, given the relatively large uncertainty on the RGS response function for diffuse sources.

XRISM/Resolve will determine the line widths accurately.

Summary

- We observed the southeastern protrusion of Tycho's SNR with XMM-Newton.
- We analyzed RGS data, which successfully resolved a number of emission lines including O Heα, Lyα, and Fe L complex, for the first time from this remnant.
- The relative abundances is more consistent with the SD model rather than the DD model.
- The line width was obtained to be 30 (*hv* / 6 keV) eV. Since this is significantly larger than what is expected from the forward shock heating, the knot was likely heated by a slower reverse shock. There is a possibility that a substantial amount of shock energy goes into cosmic-ray acceleration (for either FS or RS heating).
- Future XRISM/Resolve observations will be helpful to determine the line widths (and abundances) more accurately.