Xcalibur Workshop, Winchester, UK, 19/07/17

Constraints on AGN Torus and Outflow Geometry from High-resolution X-ray Spectroscopy

HARVARD & SMITHSONIAN

Mislav Baloković Black Hole Initiative Postdoctoral Fellow, Harvard University

What Obscures AGN?

What is their structure?

Definitions

Credit: T. Izumi et al. (2018)

TORUS 2018 meeting (Chile):

- disk-launched wind
- dusty polar outflow
- warped megamaser disk
- broad-line region
- molecular disk(s)
- nuclear star cluster
- host galaxy ISM
- transient accretion

Definitions

"Broadband X-ray Spectra"

AGN X-ray Spectrum

Main Reprocessing Features

Model Example: borus02

Obscuring Torus Models

Framework, first model and examples of its application presented in Baloković et al. (2018).

- shares the geometry and supersedes the Brightman & Nandra (2011) model
- self-consistent calculation of fluorescent lines of many chemical elements
- additional model parameters: relative iron abundance, high-energy cutoff
- decoupled and more flexible
- applicable to a wider AGN pool
- available as an Xspec table at http://www.astro.caltech.edu/~mislavb/download

Individual Tori

Four AGN of different type and data quality -- four different torus spectra.

NOTE: Energy resolution of the model is exaggerated in these plots.. *NuSTAR* needs coupling with a better resolving soft X-ray telescope for tighter constraints.

Main Torus Parameters

- used both MYtorus and borus02 for comparison
- both models agree that $N_{H,los} \neq N_{H,tor}$ typically, and that $\langle N_{H,tor} \rangle \approx 10^{24.2} \text{ cm}^{-2}$
- borus02 provides the distribution of covering factors: wide, peaks at ~0.9
- covering factor depends on intrinsic luminosity

Main Torus Parameters

- used both MYtorus and borus02 for comparison
- both models agree that $N_{H,los} \neq N_{H,tor}$ typically, and that $\langle N_{H,tor} \rangle \approx 10^{24.2} \text{ cm}^{-2}$
- borus02 provides the distribution of covering factors: wide, peaks at ~0.9
- covering factor depends on intrinsic luminosity

Inclination or Clumpiness?

High Energy Resolution

hydrodynamical model with radiation and star formation feedback (Wada 2015)

NuSTAR

20 30 50

10

energy / keV

100

200

3-79 keV

High Energy Resolution

hydrodynamical model with radiation and star formation feedback (Wada 2015)

XRISM, Athena

Existing fitting models are:

- lacking scale
- insufficiently detailed
- at CCD resolution
- missing lines
- missing physics
- not public

Resolving The Torus

Using Line Diagnostics

NGC 4151, 20 ks simulations for *XRISM* and *Athena*; Miller et al. (2018)

Resolving The Torus

Probing Scale & Geometry

- flourescent lines are simpler than ionized (fixed yields)
- line widths & shifts: complex non-Gaussian shapes if blended, contributions from dense outflow, Compton shoulders
- line ratios influenced by absorption, abundances, ionization
- joint modeling with broadband & multi-wavelength data, e.g. VLBI

Summary

- AGN "torus" geometry imprints spectra with features
- broadband X-ray spectroscopy provides some geometrical constraints for local Sy II population
- dynamics/distances expected from line diagnostics
- exploring different models now, increasing complexity as each new instrument provides new constraints

Chandra -- scratching surface *XRISM --* breaking ice *Athena --* sampling diversity *Lynx --* resolving spatially

Resolving the Torus

Two "Resolutions"

1) **Spatial resolution** to resolve non-compact emission (*Chandra*, *AXIS*)

Energy resolution to get dynamics (*XRISM*, *Athena*)
Both (*Lynx*)

Around 50% of Fe K α flux is not nuclear. Survey underway to quantify better.

NGC 4945: Marinucci+17