MIT KAVLI INSTITUTE

Relativistic components of the Ultra-Fast Outflow (UFO) in the Quasar PDS 456 from Chandra/HETGS, NuSTAR and XMM-Newton observations

Rozenn Boissay-Malaquin,

Ashkbiz Danehkar, Herman Marshall, Mike Nowak

2019, Astrophysical Journal, 873, 29

Active Galactic Nuclei (AGN), Ultra-Fast Outflows and Feedback

- Warm absorbers (low ξ , v_{out} =100-1000 km/s) detected in >50% AGN
- UFOs (v_{out} = -0.1--0.4c, N_H ~ 10²³cm⁻²) observed through blueshifted highly ionized iron absorption lines above 7 keV in ~40% of AGN
- $\dot{M}_{out} \sim 10^3 M_{\odot}/yr$; $P_{kin} \sim 10^{45} 10^{46}$ erg s⁻¹; launched from the acc. disk at a few R_g from SMBH
- AGN feedback: UFOs with P_{mechanical}=0.5-5% L_{bol} => affect the AGN host galaxy, by sweeping away the galaxy's reservoir of gas and hence quench the star formation

Patchwork of previous observations of PDS 456

2

5

Rest-Frame Energy (keV)

10

20 30 40

3

Aim of our work

Is this extreme-velocity Ultra-Fast Outflow never detected in other local AGN persistent in PDS 456? What are the properties of the UFOs and other winds in this quasar?

I will present:

- 1. The 3 datasets we used for this study
- 2. Several complementary methods we used to assess the presence of both UFOs and characterize the winds, using a **dual-approach**:

Model-independent methods	Model-dependent method
Fit individual lines at high energy with Gaussian lines	Photoionization modeling using XSTAR
Blind line search at lower energy	
(Fit with P Cygni profiles)	
(Additional diagnostic for velocities)	

3. The mass outflow rates, energetics and impact of the UFOs on the host galaxy

Our analysis: three different epochs

Label	Satellite/instrument	Year	s ⁻¹) -12
CN	Chandra/HETGS + NuSTAR	2015	cm ⁻² 2×10-
С	Chandra/HETGS	2003	(ergs
XN	XMM-Newton/pn + NuSTAR (Combination of 5 observations)	2013- 2014	vF _v 10 ⁻¹²

constant*tbabs*zpcfabs*(powerlaw+zgauss)

0.5

1

2

20

CN

XN

10

5

Energy (keV)

С

Absorption features above 9 keV – fit with Gaussian lines

 v_{out} =-0.27c

v_{out 1} =-0.26c v_{out 2} =-0.47c

6

Blind line search

Legend: — Photoemission; — PC absorber; — Slowest UFO; — Fastest UFO.

Photoionization modeling

	Component	Outflowing velocity	Ionization	Datasets
Absorption	Partial covering	V ₁ high	ξ_1 medium	CN, XN, C
	UFO 1 (slowest)		ξ_2 high	CN, XN, C
	UFO 2 (fastest)	V ₂ very high		CN, XN
	Warm absorber	V ₃ null	ξ_3 small	XN
Emission	Photoemission	V ₄ small	= ξ ₂	CN, XN, C

- Analytic model warmabs, instead of XSTAR grids
- MCMC in ISIS

Photoionization modeling

	Component	Outflowing velocity	Ionization	Datasets
Absorption	Partial covering	0.24-0.29c	~3	CN, XN, C
	UFO 1 (slowest)		~6-7	CN, XN, C
	UFO 2 (fastest)	0.48c		CN, XN
	Warm absorber	0	0.7	XN
Emission	Photoemission	0.03-0.09c	~6-7	CN, XN, C

- Analytic model warmabs, instead of XSTAR grids
- MCMC in ISIS

(see Youtube video: https://www.youtube.com/watch?v=UKSVT_Fbwuw)

(see Youtube video: https://www.youtube.com/watch?v=UKSVT Fbwuw)

Unusual shape of the S-curve: Strong soft component of the SED, so low Compton temperature; gas partially ionized can reach higher temperatures

Positive gradient: thermal stability Negative gradient: unstable

(see Youtube video: https://www.youtube.com/watch?v=UKSVT_Fbwuw)

UFOs persistent, but... Negative gradient => unstable?

(see Youtube video: https://www.youtube.com/watch?v=UKSVT_Fbwuw)

UFOs persistent, but... Negative gradient => unstable?

(see Youtube video: https://www.youtube.com/watch?v=UKSVT_Fbwuw)

UFOs persistent, but... Negative gradient => unstable?

Mass outflow rates, energetics

	Inner radius	Mass outflow rate	Kinetic power
	$R_{in} \sim 2(\alpha \frac{L}{L_{Edd}} - 1)(\frac{v_{\infty}}{c})^{-2}$ (for radiatively accelerated winds, Reeves+18)	$\dot{M}_{out} \sim \Omega N_H m_p v_{out} R_{in}$ (Ω =2 π , Nardini+15)	$P_{kin} = 0.5 \dot{M} v_{out}^2$
UFO 1 (slowest)	R_{in} = 30 R_g = 5 x 10 ¹⁵ cm	M _{out} = 3-20% M _{Edd}	P_{kin} = 0.8-8% L _{Edd}
UFO 2 (fastest)	R_{in} = 9 R_g = 1 x 10 ¹⁵ cm	\dot{M}_{out} = 2-7% \dot{M}_{Edd}	P_{kin} = 0.8-8% L _{Edd}

Mass outflow rates, energetics

	Inner radius		
		$R_{in} \sim 2(\alpha \frac{L}{L_{Edd}} - 1)(\frac{v_{\infty}}{c})^{-2}$	
	(for radiatively accelerated winds, Reeves+18)		
UFO 1 (slowest)	R_{in} = 30 R_g = 5 x 10 ¹⁵ cm		
UFO 2 (fastest)	R_{in} = 9 R_g = 1 x 10 ¹⁵ cm		

Possible correlation between outflow velocity and intrinsic flux (see Matzeu+17) => radiatively driven wind (and λ_{Edd} ~1)

Mass outflow rates, energetics

	Inner radius	Mass outflow rate	Kinetic power
	$R_{in} \sim 2(\alpha \frac{L}{L_{Edd}} - 1)(\frac{v_{\infty}}{c})^{-2}$ (for radiatively accelerated winds, Reeves+18)	$\dot{M}_{out} \sim \Omega N_H m_p v_{out} R_{in}$ (Ω =2 π , Nardini+15)	$P_{kin} = 0.5 \dot{M} v_{out}^2$
UFO 1 (slowest)	R_{in} = 30 R_g = 5 x 10 ¹⁵ cm	\dot{M}_{out} = 3-20% \dot{M}_{Edd}	P _{kin} = 0.8-8% L _{Edd}
UFO 2 (fastest)	R_{in} = 9 R_g = 1 x 10 ¹⁵ cm	\dot{M}_{out} = 2-7% \dot{M}_{Edd}	P _{kin} = 0.8-8% L _{Edd}

=> Clumpy wind with different components, with a kinetic power of about 0.8-8% of the bolometric luminosity that is sufficient to induce significant AGN feedback

Conclusion

- 3 datasets: Chandra/HETGS + NuSTAR (2015), Chandra/HETGS (2003), XMM-Newton + NuSTAR (2013-2014)
- Confirmation of the presence of the UFO with v_{out} =-0.24-0.29c
- Significant detection of a faster UFO with v_{out}=-0.48c (HETGS+NuSTAR 2015; XMM+NuSTAR 2013; 2017): persistent UFO with an extreme velocity never found before in other local AGN!
- Use of several methods in a dual-approach :
 - Modeling of Fe K lines around 9 and 11 keV
 - Blind line search: identification of **blueshifted high spectral resolution lines in HETGS**
 - Photoionization modeling
- UFO ($\log(\xi) \sim 6-7$, $N_H \sim 1-8 \times 10^{23} \text{ cm}^{-2}$); PC ($\log(\xi) \sim 3$, $N_H \sim 3-20 \times 10^{22} \text{ cm}^{-2}$, $C_f \sim 0.3-0.8$); thermally stable
- UFOs powerful enough to impact the evolution of the host galaxy: \dot{M}_{out} =2-20% \dot{M}_{Edd} , P_{kin} = 0.8-8% L_{Edd}
- Results published in 2019, Astrophysical Journal, 873, 29
- Great target for XRISM, Athena, Arcus, and Lynx!