New cooling curve due to the updates of collisional excitation in the plasma code SPEX

The impact on photoionisation and cooling flow models

Lýdia Štofanová Leiden University & SRON

Supervisors: Jelle Kaastra & Joop Schaye

Cooling in the astrophysical sources

- large scale structure
- galaxy clusters & intracluster medium
- galaxies, their outflows & intergalactic medium
- accretion discs
- molecular clouds
- star formation
- white dwarfs
- - => cooling is important on various scales
 - => our knowledge is limited to accuracy of atomic data

Discrepancies among atomic databases

15/7/2019

Comparison with MEKAL

transitions from the ground level to upper levels

15/7/2019

Comparison with MEKAL

Comparison with CHIANTI & ADAS

Metastable levels

Lýdia Štofanová, XCalibur 2019

Photoionisation model in SPEX

AGN 1 = unobscured (NGC 5548) AGN 2 = obscured

New stable branch in S-curve of PIE plasma

Lýdia Štofanová, XCalibur 2019

10/12

Cooling flow model in SPEX (isobaric)

Conclusions

- excitation rates do not agree among atomic databases
- collisional excitation can significantly impact the cooling rates
- metastable levels important for cooling (Be-like, B-like, ...)
- new cooling rates:
 - new stability branches of PIE plasma
 - at low $\Xi \rightarrow$ lower plasma temperature in PIE equilibrium
 - higher differential emission measure in cooling flow model
- near future: resonant excitation