A Chandra and ALMA Study of X-rayirradiated Gas in the Central ~100 pc of the Circinus Galaxy &

A Science Prospect in the XRISM Era

(Kawamuro+19a)

<u>T. Kawamuro (NAOJ)</u> T. Izumi, M. Imanishi (NAOJ)

(red = [S II], green = H α +[N II], blue = [O III]; Maiolino+94)

Spatially-extended Fe emission

- Motivation: Understanding of co-evolution b/w galaxies and SMBHs
- AGNs basically emit X-rays, and therefore X-ray irradiation of the ISM is an un-avoidable effect on host galaxies.
- X-ray-irradiated regions can be traced by Fe-Kα emission at 6.4 keV.

⇒ Study of the Fe-Ka emission would give us insights into an AGN feedback

X-ray Irradiation of the ISM

- X-ray irradiation causes a change of the chemical composition. → X-ray Dominated Region (XDR)
- In the vicinity of an X-ray src, molecular dissociation is expected.

SF and Phases of Gas

Why do we care about the mol. gas dissociation?

- The positive correlation
 b/w Σmol and ΣSFR
 suggests a causal link
 b/w mol gas and the
 ability to form stars.
- A naive expectation is that X-ray emission can suppress SF by dissociating molecules.

An Observational Test in the Circinus Galaxy

What we have done is to reveal an XDR around an AGN

Target: the Circinus galaxy

- D = 4.2 Mpc (1" ~ 20 pc).
- A Compton-thick AGN host.
 - → Good for detecting faint, extended emission.

Obs.: Chandra & ALMA

- high spatial res. (< 1").
- high penetrating power
 of X-ray & submm/mm.
 - → Good to study the dense nuclear region with the least bias.
- high S/N data.

ObsID (Obs. date (UT)	Grating	Exp.
			(ksec)
(1)	(2)	(3)	(4)
$ 12823 \\ 12824 $	2010/12/17 2010/12/24	NO NO	$\frac{147}{38}$
62877 4770 4771	2000/06/16 2004/06/02 2004/11/28	YES YES YES	48 48 52
Project code	Obs. date (UT)	Molecules	Exp. (min)
(1)	(2)	(3)	(4)
#2015.1.01286 (PI: F. Costag	.S 2015/12/31 liola)	$HCO^{+}(J=4-3)$ HCN(J=4-3) CO(J=3-2)) 3
#2015.1.01286 (PI: F. Costag	.S 2015/12/31 liola)	$HCO^{+}(J=3-2)$ HCN(J=3-2)) 5
#2016.1.01613 (PI: T. Izumi)	.S 2016/11/24	$HCO^+(J=4-3)$) 125

Fluorescent Iron-K α Line as a Probe

- The iron-Kα line probes X-ray-irradiated regions.

(τ ~1 for the X-ray w/ the edge energy when log $N_{\rm H}$ /cm⁻² ~ 23.9)

- 6.2-6.5 keV/3.0-6.0 keV ratios \rightarrow an proxy of the EW (Fe-Ka)

X-ray Irradiation

- Multiple regions w/ bright Ka emission
- high EWs (> 1 keV) are consistent w/ being irradiated by an X-ray src.

0.01

10⁻³

10-

10-5

-2

normalized counts s⁻¹ keV⁻¹

CNR-E

Spatial Anti-correlation b/w Mol. and Iron Line

- HCO+(4-3)

- → <u>Molecular gas</u>
- \rightarrow high critical dens.
 - = dense gas tracer
- Iron-Ka line
 - → gas irrespective of atomic/mol. phases

Spatial Anti-correlation b/w Mol. and Iron Line

- HCO+(4-3)

- → Molecular gas
- \rightarrow high critical dens.
 - = dense gas tracer
- Iron-Ka line
 - \rightarrow gas irrespective of atomic/mol. phases
- eclination - Atomic-to-mol. transition boundaries?
- Mol. dissociation ?
- Next is quantitative discussion w/ XDR model

6

5

4

3

2

1

Right ascension

 $\xi_{\rm eff} = L_{\rm X}/R^2 N^{1.1}_{\rm att} n_{\rm H2}$

Physical State of the ISM

Multiple mol. line detections by ALMA

Is the X-ray emission powerful enough?

$\begin{aligned} \xi_{eff} &= L_X/R^2 N^{\alpha}_{att} n_{H2} \\ L_X &\sim 1.3e + 43 (1 - 100 \text{ keV}) \\ \text{(NuSTAR estimate by Arevalo+14)} \\ R &\sim 60 \text{ pc} \\ \text{(spatial resolved map)} \end{aligned}$

*N*_{att} ~ 1e+23.9 cm⁻²

(τ~1 for the neutral iron)

*n*_{H2} ~ 1е+3.0-5.0 ст⁻³

(mol. line ratios fit by RADEX)

	Nucleus	CNR-SE	CNR-E
log ξ _{eff}	< -4.0	-4.6~-2.6	-4.0~-2.5

Towards a further XDR study

High-E resolution calorimeters

- Hitomi study of NGC 1275 constrained iron line emitting regions.
 - $-1\sigma \sim 200-700 \text{ km/s} => r > 1 \text{ pc}$
 - the help of CXO => r < 2 kpc

→ torus ~ circum-nuclear disk

Disentanglement of iron lines w/ XRISM

XRISM (Astro-H) obs. simulation of a Circinus like spectrum

- a ratio of fluxes from a torus and an outer region is ~ 6%
- their velocity disp. (σ) are set to ~ 1000 km/s and ~ 20km/s
- exposure = 100 ksec (from CXO) (from ALMA)

We may detect iron lines (K α_1 , K α_2) from an outer region.

Disentanglement of iron lines w/ XRISM

XRISM (Astro-H) obs. simulation of a Circinus like spectrum

- a ratio of fluxes from a torus and an outer region is ~ 6%
- their velocity disp. (σ) are set to ~ 1000 km/s and ~ 20km/s
- exposure = 100 ksec (from CXO) (from ALMA)

We may detect iron lines (K α_1 , K α_2) from an outer region.

C-stat/d.o.f = 80/90

C-stat/d.o.f = 116/93

Summary

-

- AGN usually emit X-rays, and therefore the X-ray irradiation is an un-avoidable effect on the host galaxy.
- Chandra and ALMA obs. have revealed the spatial anticorrelation b/w the molecular gas and iron-Kα line emission.
 - Moderately high ionization parameters are consistent with molecules being dissociated by the X-ray emission.
 - XRISM will also have potential to study the extended Xray emission.

 \rightarrow This result would lead to the future high spatialresolution projects (e.g., AXIS, Lynx).